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1. Introduction 
The growing demand on high resolution and quality 3D geospatial data is due to technical 
developments on airborne sensors, and legal regulations, e.g. European Water Framework Directive 
(EU, 2000). Latter demands repeated surveys along inland water bodies, and triggered the new 
development of airborne hydrographic laser systems (RIEGL LMS, VQ820-G & VQ880-G). These 
green laser systems (532nm) allow to acquire topobathymetric data covering the foreland of inland 
waters and the water ground to depths of 10-12 m at the same time. The data are of high accuracy 
(less than 10 cm) and resolution with point densities of ca. 40-50 points/m². Thus, the amount of 
acquired data is increasing drastically. So, if the area of interest covers several hundreds of km², the 
amount of data can quickly reach up to several terabytes, which is hardly on the edge of storage 
device capacities and efficient data use with available software (ArcGIS etc.). For example, federal 
mapping institutions managing 3D datasets of entire states or provinces are splitting these datasets 
into tiles of km²-size. The digital surface model for Bavaria with a grid size of 40 cm – data visualized 
for and provided by the Bavarian mapping agency – comprises about 460 billion grid points equivalent 
to approximately 3 terabytes in las format (Fig.1). Even such a reduced 3D model is split into tiles, and 
had not been visualized as a single entire dataset before demonstrating that an appropriate file format 
and software framework are required to efficiently store, visualize, process and analyze massive 3D 
datasets. 
 

    
Figure 1 Overview of the Bavarian digital surface model in southern Germany (gridsize 40x40cm) 
colored by RGB values (left) and elevation (right). 
 
2. File format, data structure and software package 
 

2.1. HDF5 for storing and accessing big data 
 

Fast, efficient access to data in persistent storage is crucial when dealing with larger-than-RAM data 
and out-of-core processing when fragments are loaded on demand thereby limiting possible file 
formats. We found the Hierarchical Data Format V5 (HDF5) most suitable as a highly performing, still 
general-purpose format. It was developed for applications in High Performance Computing with the 
constraint to be as fast as raw data I/O, yet providing a portable, self-descriptive platform suitable for 
long-term archiving. All information needed to comprehend a file’s content is contained in the file itself. 
HDF5 is similar to a file system, but provides much more descriptive means such as multidimensional 
arrays and arbitrary key-value-pair attributes. Datasets are accessed as needed on-demand, in 
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contrast to file formats requiring sequential reading such as ASCII files. HDF5 provides a clear 
separation of data and meta-data. Meta-information about a dataset can be identified without reading 
the numerical data, e.g. topological properties or geometrical shape of a point cloud. How to formulate 
a specific dataset within this flexible fundament is not unique, we employ the F5 model in our case. 
 

2.2.  The F5 fiber bundle data model 
 
We consider the category of datasets with spatio-temporal meaning, i.e. an intrinsic geometry. This 
kind of data can be described mathematically as fiber bundles (Butler & Pendley, 1989), which models 
data as a pair of a so-called base space and a fiber space. Operations can be performed 
independently on each space, resulting in an infrastructure of reusable, well-tested software 
components. The overall development effort is reduced at the cost of slightly increased effort for a 
particular case while gaining stability and flexibility. This becomes essential when dealing with the 
complexity of out-of-core on-demand processing of big data as compared to simple loading of an 
entire dataset at once. 
For spatio-temporal data the base space is a manifold with the fiber space being its tangential space, 
as known from differential geometry. In many cases the manifold is a vector space (Euclidean space), 
and as it has the same dimension as the tangential space, coordinates and directions are frequently 
blurred by using the same type for the ease of implementation. However, they are fundamentally 
different, which becomes evident when considering e.g. curved surfaces as manifold. Both spaces 
provide different properties: the base space is discretized, i.e. given on distinct locations, whereas the 
fiber space may contain arbitrary floating point numbers. The base space is well described by a CW-
complex modeling the manifold via vertices, edges, faces, three-dimensional cells, defined via their 
adjacency relationships. This yields a hierarchical scheme of so-called k-Skeletons containing a set of 
k-cells, with k as dimension of the respective object: vertices are 0-cells, edges are 1-cells, triangles, 
quads, polygons are 2-cells, and tetrahedral, hexahedra, polyhedra are 3-cells. Explicit modelling of 
this scheme is only needed for unstructured meshes of varying cell type, but in most cases only a 
minimal subset is required. 
In the F5 model (Benger, 2004; Benger et al., 2011), data can be defined on each of those k-
Skeletons. When mapped onto HDF5 each such k-Skeleton is one entry in the file’s directory 
structure. The F5 model specifically extends the concept of dimensionality of k-Skeletons further into 
agglomerations of k-cells, such as sets of edges, sets of triangles, sets of tetrahedra, and furthermore 
sets thereof, and sets of sets. Data can then be defined on each of these Skeletons; all such data per 
Skeleton will have the same number of elements. The “level of agglomeration” is described via an 
integer parameter called the index depth, in addition to dimensionality (Fig. 2). This scheme unifies 
diverse classes of datasets, e.g. point clouds, line sets, triangular meshes, tetrahedral meshes, raster 
images etc. (Benger, 2009). 
The F5 model casts all data into a hierarchy of five levels with actual numerical data only at the 
terminal nodes of this non-cyclic graph. Figure 3 illustrates the HDF5 directory listing (similar to file-
system listings) for some e.g. tetrahedral mesh providing vertices, edges, faces and tetrahedral cells. 
Geometrical primitives are represented - purely topologically - via indices to a list of vertices. Vertices 
are represented via their numerical values in one or more coordinate systems. Both lists define the 
geometrical shape of the mesh. This scheme fits directly to the HDF5 layout, providing a clear 
distinction between geometry and topology. Time-dependent data are supported via the top-level 
group, multiple geometries via the second-level group. 
Practical applications require knowledge about relationships between topological properties of a mesh, 
such as the edges per triangle etc. The data organization scheme allows such via “relative 
representations”, i.e. a group of data that references another group of data (Fig. 4).  By adding a third 
integer parameter “refinement level” to the attributes of a Skeleton, the F5 scheme also allows to 
support multi-resolution data, which is crucial for quick access to big data within an interactive 
environment. This now three-dimensional indexing scheme on Skeletons results in a replication of 
geometrical and topological properties of a dataset in various levels of detail. Each such level can 
remain entirely independent, but a topological property on one level may also refer to the topological 
property of another level. This way we can specify parent-children-relationships, for instance how 
many triangles of a fine resolution level correspond to a single triangle on a coarser resolution. For 
huge point clouds we utilize this functionality to organize points within axis-aligned bounding boxes – a 
“data fragment” - in different resolutions and store the relationships between a data fragment and its 
children on the next higher resolution.  
 



 
Figure 2 Classification scheme for Skeletons in the F5 model via dimension of its basic elements and 
level of agglomeration from geometrical primitives. 
 

 
Figure 3 Example of an unstructured mesh modelled in the F5 scheme as it appears in a file content 
listing in HDF5. 
 

 
Figure 4 Relative representations of topological properties within an unstructured mesh in the F5 
scheme. 
 



3. Data handling for efficient visualization and analysis 
 
All data in the F5 data model are represented as contiguous arrays allowing for optimal I/O and fitting 
perfectly the data requirements of modern graphics hardware. In the OpenGL graphics API data are 
represented via vertex and index buffers, which can be directly loaded from file to RAM to GPU 
memory. In our visualization environment, the Vish Visualization Shell, we utilize a two-level caching 
scheme managing data in RAM on first instance, and GPU memory as second instance. Each level is 
filled on-demand depending on user interaction and 3D navigation selecting. 
  

3.1. Multi-resolution display 
 
The human eye corresponds to ca. 324 million pixels assuming an average angular resolution of one 
arc minute over the field of view. For everyday end-users, the limitation of visible detail will be bound 
to ca. 2 million pixels for a common 1920x1200 screen. Thus, we only need to display a subsampled 
version of big point cloud or a subset when zooming in. For perspective display, we need to mix 
multiple point cloud refinements. The rendering algorithm must complete in 30 milliseconds for a 
comfortable smooth user experience, including the selection of the proper resolution out of a set of 
multiple levels (Fig. 5). 
 

3.2. Tiling, fragmentation and data combination 
 
Modern graphic cards can render about 10 million points within 10msec. Therefore, the objective is to 
split large datasets beyond this threshold into smaller fragments. We create spatially contiguous 
fragments in axis-aligned bounding boxes (Fig. 6). This supports local, quick data analysis without 
need to access any other data fragment than the particular one, which is essential for rendering and 
point cloud classification. For appropriate data interpretation and analysis, we render different data 
types in a single viewer, such as line sets from cadastral maps, triangular meshes, LiDAR point clouds 
etc. (Fig. 7). In practical applications end users often need to measure distances. Real time interaction 
with big data allows to include a measuring tool, such as a line or polygon. Any kind of measuring is 
handled within the same data model, and thus can be stored together with the big data in one or more 
HDF5 files. 

 
4. Results from Bavaria and conclusions 
 
The merged and processed DSM dataset of Bavaria consists of approximately 73850 fragments of 
1x1km, thus covering an area of more than 73000 km² (Fig. 1). The data processing includes the 
conversion and merging of the original LAS files for the single DSM tiles into aHDF5, file compression, 
rendering with RGB values (Fig. 1 left side) as well as the refinement for multi-resolution display (Fig. 
6). The final result is a single file of about 7 terabytes. 
The ultimate performance for the Bavarian dataset (Fig. 1) results from the choice of file format 
structure (HDF5), data model (F5 model), visualization environment (Vish Visualization Shell), and 
data preparation parameters (fragments, refinement etc.). The process combines various different 
input data files of different format (las, ASCII, shape etc.) with diverse content (point data, line sets, 
triangle meshes, rasters etc.) into one final data file. Thus, our approach on data handling provides the 
unique opportunity to perform real-time data evaluation just by visual inspection of simultaneously 
visualized datasets (Fig. 7). 
 



 
Figure 5 Multi-resolution display of a LiDAR point cloud describing a church within a village. 
 

 
Figure 6 Detailed view to neighboring fragments of a LiDAR point cloud. 



  
Figure 7 Height colored digital terrain model and simplified building models (left), and building models 
displayed together with LiDAR point cloud (right). 
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